A Role for DPPX Modulating External TEA Sensitivity of Kv4 Channels
نویسندگان
چکیده
Shal-type (Kv4) channels are expressed in a large variety of tissues, where they contribute to transient voltage-dependent K+ currents. Kv4 are the molecular correlate of the A-type current of neurons (I(SA)), the fast component of I(TO) current in the heart, and also of the oxygen-sensitive K+ current (K(O2)) in rabbit carotid body (CB) chemoreceptor cells. The enormous degree of variability in the physiological properties of Kv4-mediated currents can be attributable to the complexity of their regulation together with the large number of ancillary subunits and scaffolding proteins that associate with Kv4 proteins to modify their trafficking and their kinetic properties. Among those, KChIPs and DPPX proteins have been demonstrated to be integral components of I(SA) and I(TO) currents, as their coexpression with Kv4 subunits recapitulates the kinetics of native currents. Here, we explore the presence and functional contribution of DPPX to K(O2) currents in rabbit CB chemoreceptor cells by using DPPX functional knockdown with siRNA. Additionally, we investigate if the presence of DPPX endows Kv4 channels with new pharmacological properties, as we have observed anomalous tetraethylammonium (TEA) sensitivity in the native K(O2) currents. DPPX association with Kv4 channels induced an increased TEA sensitivity both in heterologous expression systems and in CB chemoreceptor cells. Moreover, TEA application to Kv4-DPPX heteromultimers leads to marked kinetic effects that could be explained by an augmented closed-state inactivation. Our data suggest that DPPX proteins are integral components of K(O2) currents, and that their association with Kv4 subunits modulate the pharmacological profile of the heteromultimers.
منابع مشابه
DPPX modifies TEA sensitivity of the Kv4 channels in rabbit carotid body chemoreceptor cells.
Chemoreceptor cells from rabbit carotid body (CB) exhibit transient outward currents reversibly inhibited by low P(o2). Molecular and functional dissection of the components of these outward currents indicates that at least two different channels (Kv4.3 and Kv3.4) contribute to this current. Furthermore, several lines of evidence support the conclusion that Kv4 channel subfamily members (either...
متن کاملA Dipeptidyl Aminopeptidase–like Protein Remodels Gating Charge Dynamics in Kv4.2 Channels
Dipeptidyl aminopeptidase-like proteins (DPLPs) interact with Kv4 channels and thereby induce a profound remodeling of activation and inactivation gating. DPLPs are constitutive components of the neuronal Kv4 channel complex, and recent observations have suggested the critical functional role of the single transmembrane segment of these proteins (Zagha, E., A. Ozaita, S.Y. Chang, M.S. Nadal, U....
متن کاملKv4 accessory protein DPPX (DPP6) is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons.
A-type K+ currents have unique kinetic and voltage-dependent properties that allow them to finely tune synaptic integration, action potential (AP) shape and firing patterns. In hippocampal CA1 pyramidal neurons, Kv4 channels make up the majority of the somatodendritic A-type current. Studies in heterologous expression systems have shown that Kv4 channels interact with transmembrane dipeptidyl-p...
متن کاملThe Kv4 accessory protein DPPX is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons
A-type K currents have unique kinetic and voltage-dependent properties that allow them to finely tune synaptic integration, action potential (AP) shape and firing patterns. In hippocampal CA1 pyramidal neurons, Kv4 channels make up the majority of the somatodendritic A-type current. Studies in heterologous expression systems have shown that Kv4 channels interact with transmembrane dipeptidyl-pe...
متن کاملDPP6 Localization in Brain Supports Function as a Kv4 Channel Associated Protein
The gene encoding the dipeptidyl peptidase-like protein DPP6 (also known as DPPX) has been associated with human neural disease. However, until recently no function had been found for this protein. It has been proposed that DPP6 is an auxiliary subunit of neuronal Kv4 K(+) channels, the ion channels responsible for the somato-dendritic A-type K(+) current, an ionic current with crucial roles in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 131 شماره
صفحات -
تاریخ انتشار 2008